High-Dimensional Anomaly Detection with Radiative Return in e+e- Collisions

Julia Gonski, Jerry Lai, Benjamin Nachman, Inês Ochoa

1 September 2021
Energy Frontier Kickoff Workshop

arXiv:2108.13451

Outline

Motivation

- Anomaly detection in HEP
- e+e- & radiative return

Strategy

- Dataset details/samples
- Training setup & the CWoLa method

Results

- Data vs. simulation (semi-supervised)
- Background-only training (weakly supervised)
- Experimental outlook & conclusions

Anomaly Detection in HEP

- Anomaly detection (AD) = identify features of the data that are inconsistent with a background-only model
- At the Large Hadron Collider: no recent new physics + many exclusion results → develop strong model independent search program
 - Weakly supervised learning in dijet final states (ATLAS)
 - LHC Olympics 2020: cross-experiment/theory "competition" of AD methods
 - <u>Dark Machines</u> anomaly score challenge

AD Beyond the LHC

- Snowmass 2022: several e+e- colliders (ILC, FCCee, CEPC) are strong candidates for the next international accelerator
- How to exploit anomaly detection in an entirely different type of particle collision?
 - Many crucial differences in hadron vs. e+e- events: initial state knowledge, background processes, pileup, detector info

pp
$$\rightarrow$$
 dijet, \sqrt{s} =13 TeV LHC

pp
$$\rightarrow$$
 dijet, \sqrt{s} =13 TeV LHC $e^+e^- \rightarrow WW \rightarrow q\bar{q}q\bar{q}$, \sqrt{s} =1 TeV ILC

e+e- Dataset

- Signal: 700 GeV scalar $X \rightarrow 2100$ GeV scalars $aa \rightarrow b\bar{b}b\bar{b}$
- · Background: Drell-Yan hadronic decays
- Reconstruct dijet final state with R=1.0 jets built from particle flow objects
- Generate e+e- collisions at $\sqrt{s} = 1$ TeV (Madgraph)
 - Pythia showering/hadronization + Delphes detector simulation (using general ILC card)
 - Emulate training scenario with "full dataset" of ~6.5 ab-1

Background

Radiative Return in e+e-

- Require events to have at least 1 photon with E > 10 GeV from initial state radiation (ISR)
 - ISR photon can have any energy
 - Initial CoM energy in e+e- is exactly known
- Can use to "scan" new particle masses, à la dijet invariant mass bump hunts at the LHC

350 GeV *X* ~ 650 GeV γ

700 GeV *X* ~ 300 GeV *γ*

Training Setup

- Using Particle Flow Networks implemented in <u>EnergyFlow framework</u>: model an event as an unordered, variable-length set of jets
 - Up to 15 jets per event
 - 10 features per jet: 4 vector (pT, η, φ, m),
 b-tagging bit, 5 N-subjettiness variables τ
- →150 input features per event
- Normalization: normalize jets to average p_T/η/φ in event — critical to not induce √s sculpting
- Ensembling: train 50 models per setup with random signal injections, quantile scale outputs, and average

Semi-supervised (Data vs. Simulation)

- Select signal and background in ±25 GeV windows in √s around the resonance mass: SR = [675, 725)
- Train with a variety of signal contaminations: σ=0.0, 0.5, 1.0, 2.0, 3.0, 5.0, and ∞ (eg. all S vs. all B)

Semi-supervised (Data vs. Simulation)

- Select signal and background in ±25 GeV windows in √s around the resonance mass: SR = [675, 725)
- Train with a variety of signal contaminations: σ =0.0, 0.5, 1.0, 2.0, 3.0, 5.0, and ∞ (eg. all S vs. all B)
- → Significance Improvement Characteristic (SIC): can enhance a 0.6% signal contamination from 1.0σ to ~10.0σ

SIC: X=700 GeV vs. bkg

Data-Driven/Weakly Supervised (CWoLa)

- NN trained in signal region vs. sideband is sensitive to signal vs. background characteristics
 - SR and SB defined in windows of m_{jj}, each region has different fraction of signal

Data-Driven/Weakly Supervised (CWoLa)

- NN trained in signal region vs. sideband is sensitive to signal vs. background characteristics
 - SR and SB defined in windows of m_{jj}, each region has different fraction of signal

Monitoring √s Correlation

- Shift to CWoLa training means signal and background are in different √s bins
 - → Need to validate extrapolation across √s & ensure little/no correlations
- CWoLa-trained classifier tested on background in SB vs. background in SR has learned nothing to discriminate on √s alone

ROC: Bkg in SB vs. Bkg in SR

Weakly Supervised Results

•SR = [675, 725); sideband in ±50 GeV windows around SR= [625,675) U [725,775)

Weakly Supervised Results

- •SR = [675, 725); sideband in ±50 GeV windows around SR= [625,675) U [725,775)
- Little degradation in performance from removing signal hypothesis: 1.0σ excess enhanced to ~3.0σ
 - Other contaminations have even smaller discrepancies

SIC: X=700 GeV vs. bkg

Experimental Outlook

- Detector features such as mass resolution and forward acceptance have strong impact on radiative return AD analyses
- Investigating different √s reconstruction measures to understand dependency and inform e+e- detector design

Measured \sqrt{s} , photon captured

Measured \sqrt{s} , photon lost

Conclusions

- Successful application of anomaly detection to a novel e+e-collision dataset
- Strong performance from high dimensional Particle Flow Network training inputs in labeled data vs. simulation classification
- Shift to data-driven training via CWoLa method shows little degradation, and enhanced sensitivity to a generic new physics signal with no signal prior
- On the arXiv as of this morning! arXiv:2108.13451
 - Comparison of performance in various measures of √s
 - Sensitivity to lower mass X resonance (350 GeV)
 - Comparison to sensitivity from e+e- event-level variables

Backup

Event Level Variable Results

- Training features: 15 per event
 - Masses: leading & subleading large-R jet, total jet mass
 - Transverse momenta: leading & subleading large-R jet, leading photon, j1 pT / γ 1 pT, reconstructed X, X pT / γ 1 pT
 - Multiplicities: # particle, # jets
 - Aplanarity, sphericity, transverse sphericity
 - In(y23), calculated with all jets in the event

ROC

SIC

Training Result ROC Curves

S vs. B Training

CWoLa Training

Neural Net Setup

- Train over 50k events:
 - 25k background only
 - 25k with signal contamination of fixed percent
 - Test set = 10% of training (50% signal, 50% background)
- •30 epochs, batch size 100
- Adam optimizer with initial learning rate 0.0001
- Architecture: dense sizes (100, 100), Phi/F sizes (20, 20, 20)

Leading Jet Training Inputs

Subleading Jet Training Inputs

A Word on Jets

- Jets = sprays of hadronic particles reconstructed with clustering algorithms into a cone
- Higher mass exclusions for new particles + high energy collisions = high momentum outputs
 - Constituents: individual hadrons in jet
 - Boosting: collimation of constituents due to high momentum parent
 - Substructure: synthesizing correlations between jet constituents to determine particle content in large radius jet

Small-radius jets Large-radius jet Single q/g H→bb t→W(qq)b No Substructure 2-prong 3-prong